Synthesis and Characterization of ZnS Nanoparticles Using Co-precipitation Method

Main Article Content

S. Mohanapriya
M. Vennila
S. Kowsalya

Abstract

ZnS nanoparticles were prepared from homogeneous chemical co-precipitation reaction by using zinc acetate, sodium sulfide [Na2S] and Poly Vinyl Polypyrrolidone [PVP]. The basic, morphological, and optical properties of the synthesized nanoparticles were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray Analysis (EDX) and Ultraviolet-Visible (UV-Vis) absorption. The structural and optical characterization of the samples observed by SEM, FTIR, EDX and UV-Vis spectrometer showed that ZnS nanoparticles were formed.

Keywords:
Nanoparticle, precipitation, zinc sulfide, characterization techniques.

Article Details

How to Cite
Mohanapriya, S., Vennila, M., & Kowsalya, S. (2020). Synthesis and Characterization of ZnS Nanoparticles Using Co-precipitation Method. Asian Journal of Applied Chemistry Research, 5(1), 26-33. https://doi.org/10.9734/ajacr/2020/v5i130125
Section
Review Article

References

Kumar V, Lee PS, Redox. Active polyaniline-h-MoO3 hollow nanorods for improved pseudocapacitive performance. J. Phys. Chem. C. 2015;119:9041-9049.
DOI: 10.1021/acs.jpcc.5b00153

Frackowiak E. Carbon materials for super-capacitor application. Phys. Chem. Chem. Phys. 2007;9:1774-85.
DOI: 10.1039/b618139m

Zhang LL, Zhao XS. Carbon-based materials as super capacitor electrodes. Chem. Soc. Rev. 2009;38:2520-2531.
DOI: 10.1039/b813846j

Pan H, Li J, Feng YP. Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 2010;5:654-668.
DOI: 10.1007/s11671-009-9508-2

Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 2001;39:937-950.
DOI: 10.1016/S0008-6223(00)00183-4

Zhang SW, Chen GZ. Manganese oxide based materials for super capacitors. Energy Mater. 2008;3:186-200.
DOI: 10.1179/174892409X427940

Feng G, Li S, Presser V, Cummings PT. Molecular insights into carbon super capacitors based on room-temperature ionic liquids. J. Phys. Chem. Lett. 2013;4: 3367-3376.
DOI: 10.1021/jz4014163

Simon P, Gogotsi Y. Materials for electro-chemical capacitors. Nat. Mater. 2008;7: 845-854.
DOI: 10.1038/nmat2297

Rui X, Tan H, Yan Q. Nano structured metal sulfides for energy storage. Nano-scale. 2014;6:9889.
DOI: 10.1039/C4NR03057E

Conway BE. Electrochemical super capacitors scientific fundamentals and technological application. Kluwer Academic Publishers, Plenum Press: New York; 1999.

Miller JRJ, Burke AFA. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interface. 2008;53-65.

Lukatskaya MR, Dunn B, Gogotsi Y. Multi-dimensional materials and device architectures for future hybrid energy storage, Nat. Commun. 2016;7:12647.
DOI: 10.1038/ncomms12647

Simotwo SK, Delre C, Kalra V. Super-capacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl. Mater. Interfaces. 2016;8:21261-21269.
DOI: 10.1021/acsami.6b03463

Mondal S, Rana U, Malik S. Reduced graphene oxide/Fe3O4/polyaniline nano-structures as electrode materials for an all-solid-state hybrid supercapacitor. J. Phys. Chem. C. 2017;121:7573-7583.
DOI: 10.1021/acs.jpcc.6b10978

Zhang G, Kong M, Yao Y, Long L, Yan M. One-pot synthesis of γ-MnS/ reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors. Nanotechnology. 2017; 28:065402.
DOI: 10.1088/1361-6528/aa52a5

Wang X, Deng J, Duan X, Liu D, Guo J, Liu P. Crosslinked polyaniline nanorods with improved electrochemical performance as electrode material for supercapacitors. J. Mater. Chem. A. 2014;2:12323.
DOI: 10.1039/C4TA02231A
Available:http://www.drugs.com › mtm › zinc-acetate
Available:http://en.wikipedia.org › wiki › Sodium_sulfide
Available:http://en.wikipedia.org › wiki › Polyvinylpolypyrrolidone

Harish GS, Reddy PS. Synthesis and characterization of water soluble ZnS: Ce, Cu co-doped nanoparticles: Effect of EDTA concentration. International Journal of Science and Research. 2015;4(2):221-225.

Reddy DA, Sambasivam S, Murali G, Poornaprakash B, Vijayalakshmi RP, Aparna Y, Reddy BK, Rao JL. Effect of Mn co-doping on the structural, optical and magnetic properties of ZnS: Cr nanoparticles. Journal of Alloys and Compounds. 2012;537:208-215.

Reddy B. Hariprasad GS, Harish, Sreedhara Reddy P. Synthesis and luminescence properties of Ni doped ZnS nanoparticles. International Journal of Science Technology & Engineering. 2016; 2(10):216-220.

Stanić Vojislav, Suzana Dimitrijević, Jelena Antić-Stanković, Miodrag Mitrić, Bojan Jokić, Ilija B. Plećaš, Slavica Raičević. Synthesis, characterization and anti-microbial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Scienc. 2010;256(20):6083- 6089.