A Comparative Study of the Phytochemical Activities of Some Nigerian Indigenous Kola Nuts
Kola acuminate (Igbo Kola Nut), *Kola vera* (Hausa Kola Nut), and *Garcinia kola* (Bitter Kola)

1Department of Industrial Chemistry, Renaissance University, Ugbawka, Enugu, Nigeria.
2Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. Authors SEI and MCE designed the study, authors SEI and EOA performed the statistical analysis, authors SEI and MCE wrote the protocol and author MCE wrote the first draft of the manuscript. Authors MCE, SEI, EOA, ULK, NEN, ICC and CGO managed the analyses of the study. Authors SEI and MCE managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJACR/2019/v3i230090

(1) Dr. Endang Tri Wahyuni, Professor, Department of Chemistry, Gadhah Mada University, Indonesia.

(2) Eribe Mary, University of Benin, Nigeria.

Editors:

(1) Tsabang Nolé, University of Dschang, Cameroon.
(2) Eribe Mary, University of Benin, Nigeria.

Complete Peer review History: http://www.sciarticle3.com/review-history/49811

Received 10 April 2019
Accepted 20 June 2019
Published 28 June 2019

ABSTRACT

Aims: Nigerian indigenous kola nuts (*Garcinia kola*, *Kola acuminate*, *Kola vera*) were evaluated for potential phytochemical properties.

Study Design: Phytochemical analysis.

Place and duration of Study: Renaissance University, Ugbawka, Enugu State, Nigeria, July 2016.

Methodology: The nuts were dried, ground and extracted by cold maceration with 99.5% methanol for 72 hours after which the methanol was allowed to evaporate.

Results: The phytochemical evaluation revealed the presence of saponin glycosides, glycoside, volatile oil, steroid and alkaloid in *Kola vera*; saponin, saponin glycoside, glycoside, tannins,
2.1 Preparation of Reagents

Preparation of 0.5 M solution of sodium hydroxide using 1000 cm3 volumetric flask.

Molar mass of NaOH = 23+16+1 = 40 g/mol

Mass of NaOH required = 0.5 mol x 40 g = 20 g/dm3 dm3

20 g of NaOH is for 1000 cm3.

Procedure: 20 g of NaOH was weighed and dissolved in 1000 cm3 volumetric flask and was made up to the mark with distilled water.

Preparation of 0.030 M ferric chloride solution using 1000 cm3 volumetric flask.

Molar mass of FeCl$_3$=35.5x3+56 = 162.5 g/mol

Molar mass of FeCl$_3$ required = 0.30 mol x 162.5 g = 48.75 g/dm3 dm3

48.75 g/dm3 of FeCl$_3$ is for 1000 cm3.

Procedure: 48.75 g of FeCl$_3$ was dissolved in 1000 cm3 volumetric flask and made up to the mark with distilled water.

Preparation of 0.1 mol/dm3 tannic acid using 100 cm3 volumetric flask.

Molar mass of Tannic Acid (C$_{76}$H$_{52}$O$_{46}$) =12x76+1x52+16x46= 1704 g/mol

Mass of C$_{76}$H$_{52}$O$_{46}$ required = 0.1 mol x 1704 g= 17.04 g/dm3

17.04 g/dm3 of C$_{76}$H$_{52}$O$_{46}$ is for 1000 cm3.

Procedure: 17.040 g of C$_{76}$H$_{52}$O$_{46}$ was introduced to the 1000 cm3 volumetric flask and made up to the mark with distilled water.

Preparation of 1Moldm$^{-3}$ solution of Ammonia acid using 100 cm3 volumetric flask.

1 Moldm$^{-3}$ solution of Ammonia contain 99 g/dm3.

Therefore 1 moldm$^{-3}$ solution of ammonia acid would contain 99 g dm$^{-3}$.

Since the acid stock solution contain 98% of ammonia acid with relative density of 0.88. Mass = 98/100 x0.88=0.87 g.
0.87 g of ammonia is contained on 1 cm3 of stock solution 98 of the acid will contain.

\[98 \times 1 \text{ cm}^3 = 11.32 \text{ cm}^3 \]
\[0.87 \]

The volume of the concentrated ammonia acid required to be diluted to give 1.00 moldm3 solution = 11.32 cm3.

Preparation of 0.1 Moldm3 solution of Ethanol Acid using 100 cm3 Volumetric flask.

0.1 Moldm3 solution of Ethanol acid contain 99 g/dm3.

Then 0.1 Moldm3 solution of ethanol acid would contain 99 g/dm3.

If the acid stock solution contain 98% of ethanol acid with relative density of 0.78.

Then Mass = \(\frac{98}{100} \times 0.78 \approx 0.75 \)

0.75 g of ethanol acid is contained on 1 cm3 of stock solution 98 of the acid will contain.

\[98 \times 1 \text{ cm}^3 = 13.1 \text{ cm}^3 \]
\[0.75 \]

Therefore volume of the concentrated ethanol acid needed to be diluted to give

1.00 moldm3 solution = 13.1 cm3.

2.2 Sample Collection and Preparation

In this research work, three types of kola nut were used, they are *kola Vera* (Hausa kola), *kola acuminata* (Igbo kola), and *kola garcinia* (bitter Kola). The kola nuts were collected from Eke Main Market in Udi LGA of Enugu State, and Ogbete Main Market, respectively all in Enugu State, South-Eastern of Nigeria.

2.2.1 Sample preparation

The samples were washed and sliced into tiny pieces and allowed to dry for 98 hours under room temperature condition. The dried samples were crushed into fine powder to increase the surface area activities.

2.2.2 Extraction using cold maceration methods

200 g each of the three ground kola samples, *kola acuminata*, *kola vera* and *Garcinia kola* was weighed and poured into three different beakers with firm covers. 99.5% methanol was employed for the extraction. The first stage of the extraction was done using 1000 ml of ethanol to soak each samples for a period of 24 hours with intermittent stirring, after which the extract was filtered and squeezed with teflon cloth to remove all the liquid and a second filtration was done with filter paper (Whatman No 20), then the kola nuts materials were recovered, the extracts were then transferred into an empty storage bottles and labelled appropriately. Then, the kola nuts materials (residues) were reintroduced into the three different buckets for second extraction. Similarly, the second extraction was carried out using 500 ml of 90% methanol to soak each of *Garcinia kola*, *kola acuminata* and *kola vera* for 24 hours with regular stirring. The kola nuts material recovered and the extract were poured into the storage bottles according to its label. The same procedure was repeated for the third time using 250 ml ethanol and the extracts were poured into the labelled bottles; the extraction lasted for 72 hours. Finally, the extracts were evaporated in an open air to obtain the crude extracts which were weighed and recorded, the percentage yields were also calculated and recorded.

2.3 Phytochemical Analysis

2.3.1 Test for saponins [10]

2.5 cm3 of each extract was vigorously shaken with 10 cm3 of water for 2 minutes in a test tube. 2cm3 of olive oil was then added. It was observed for persistent frothing and emulsion formation and result recorded.

2.3.2 Test for saponin glycosides [10]

2.5 cm3 of mixture of Fehling’s solutions A and B were added to 2.5 cm3 of each extract in a test tube. Development of bluish-green precipitate was of interest here and the result was recorded.

2.3.3 Test for steroids and triterpenoids (Libermann-Burchard test)

2 cm3 of acetic anhydride were added to 2 cm3 of each extract in a test tube and was cooled in ice. 3 cm3 of concentrated Sulphuric acid was carefully added and a change in colour from violet to bluish-green colour was observed.

2.3.4 Test for glycoside (General) [10]

Dilute Sulphuric acid (2.5 cm3) were added to 5 cm3 of each extract in a test tube and boiled for
15 minutes. Then 3 cm3 of 0.5 mol/dm3 sodium hydroxide and 5 cm3 of mixed Fehlings solution A and B were added. The formation of brick-red precipitate is a positive test.

2.3.5 Test for digitalis glycosides [11]

A drop of 0.030mol of ferric chloride were added to 2 cm3 of each extract in a test tube; 2 cm3 of glacial acetic acid and 2 cm3 of each concentrated sulphuric acid were added. The resulting solution was observed for the formation of blue layer and the result was recorded.

2.3.6 Test for anthracenes (Born-Tragger’s test)

2 cm3 of chloroform was added to 2 cm3 of each extract in a test tube and was allowed to separate. To the chloroform layer were added 2 cm3 of 1 mol/dm3 of ammonia solution and vigorously shaken and kept to separate. The observation of brick-red precipitate is a positive result and was recorded.

2.3.7 Test for tannins (general) [11]

A mixture of 4 cm3 of each extract and 4 cm3 of water in a test tube was stirred very well and 3 drops of 0.30 mol/dm3 ferric chloride solution added and the mixture observed for immediate green colouration and result recorded. (Trease and Evan, 1978).

2.3.8 Hydrolisable tannins [10]

4 cm3 of 1 mol/dm3 of Ammonia solution were added to 4 cm3 of each extract in a test tube and shaken very well and observed for the formation of an emulsion and the result was recorded.

2.3.9 Test for pseudotannins [12]

A matchstick was dropped into 3 cm3 of each extract in a test tube and 2 drops of concentrated hydrochloric acid added. The matchstick was then left undistorted for 5 minutes and observe for a dark purple colouration on it and result was recorded.

2.3.10 Test for flavonoids [11]

A small quantity of magnesium chips was dropped in 3 cm3 of each extract in a test tube and 5 drops of concentrated hydrochloric acid added. The formation of reddish colouration is a positive result and it was recorded.

2.3.11 Test for resins [11]

2 cm3 of acetic anhydride were added to 2 cm3 of each extract in a test tube and 2 drops of concentrated sulphuric acid added. It was observed for violet colouration and the result was recorded.

2.3.12 Test for alkaloids

(a) Krants Test: Two drops of Krants reagent were added to 2 cm3 of each extract in a test tube and observed frosty milky solutions.

(b) Tannic Acid Test: Two drops of 0.1 mol/dm3 (W/V) tannic acid were added to 2 cm3 of each extract in a test tube and observed for a cream colouration and the observation was recorded.

(c) Mayer’s Test: Three drops of Mayer’s reagent were added to 2 cm3 of each extract in a test tube and this was observed for a reddish precipitaiton or colouration.

2.3.13 Volatile oil test [11]

Six drops of 0.30 mol/dm3 ferric chloride solution were added to a mixture of 2 cm3 of each extract in a test tube and 2 cm3 of 0.1 mol/dm3 (V/V) ethanol. The resulting mixture was observed for green colouration and the result was recorded.

3. RESULTS

3.1 Result of Crude Extract and Percentage Yield

<table>
<thead>
<tr>
<th></th>
<th>Crude extract</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kola nuts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kola vera</td>
<td>54.60 g</td>
<td></td>
</tr>
<tr>
<td>Garcinia kola</td>
<td>45.20 g</td>
<td></td>
</tr>
<tr>
<td>Kola acuminata</td>
<td>36.60 g</td>
<td></td>
</tr>
</tbody>
</table>

Percentage yield

\[
\% \text{ yield} = \frac{\text{weight of crude extract}}{\text{initial weight of sample}} \times 100
\]

Kola vera:
\[
\frac{(54.60/200) \times 100}{1} = 27.3\%
\]

Garcinia kola:
\[
\frac{(45.20/200) \times 100}{1} = 22.6\%
\]

Kola acuminata:
\[
\frac{(36.60/200) \times 100}{1} = 18.3\%
\]
Table 1. Phytochemical results

<table>
<thead>
<tr>
<th>Phytochemical</th>
<th>Kola vera</th>
<th>Kola acuminata</th>
<th>Garcinia kola</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Saponin</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>2 Saponin Glycoside</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3 Glycoside</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4 Digitalis Glycoside</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5 Anthracene</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 Tannins</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7 Hydrolysable tannins</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8 Pseudo tannins</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9 Flavonoids</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10 Resin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11 Volatile oil</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>12 Alkaloid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12a Tannic acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12b Krants test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13 Steroid</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: + = Present, - = Absent

Results of Phytochemical screening of the crude extract of the three varieties of kola nuts (kola vera, kola acuminata, Garcinia kola) is shown in Table 1.

4. DISCUSSION

From the results, Vera kola had the highest percentage yield (27.3% crude extract) amongst the three kola nuts used in this research, seconded by Garcinia kola (22.6%) and then kola acuminata has the smallest percentage yield (18.3%).

The phytochemical and antioxidant study carried out on the three varieties of kola nuts, (Garcinia kola, kola acuminata and kola vera) revealed the presence of medicinally active constituents. The phytochemically active compounds of the three varieties of kola were qualitatively analyzed and the results presented in Table 1. Saponin glycosides, glycose, volatile oil, steroid and alkaloid were found in kola vera; saponin, saponin Glycoside, Glycoside, Tannins, Pseudo tannins, Volatile oil, Steroid and Alkaloid were found in kola acuminata while flavonoid, Alkaloid and steroid were found in Garcinia kola. The medicinal values of the kola nuts lie in their constituent phytochemicals and antioxidants [13]. From the chemical analysis it was observed that all the three samples of kola nuts contained phytochemicals, out of the three samples kola acuminata (Igbo kola nut) has the most phytochemical properties followed by kola garcinia (bitter kola) and then kola vera (Hausa kola nut). Also all of them contain antioxidants properties. The phytochemicals and antioxidants play a vital role in delaying, intercepting, and preventing oxidation reaction catalyzed by free radical in the body thereby preventing related sicknesses.

5. CONCLUSION

The present study revealed that Nigerian indigenous kola nuts contained high amount of phytochemicals and antioxidants. The observed phytochemical and antioxidant activities of these kola nuts justified their medicinal use for prevention and cure of diseases. The presence of the identified phytochemicals makes the kola nuts pharmacologically active. Their antioxidant activity may be responsible for their usefulness in the management and treatment of various diseases. Kola acuminata is the most potent among the three varieties of Nigerian kola nuts in prevention of cancer and other health related issues since antioxidants help in eliminating the carcinogenic radicals in human body. We also recommend that Kola acuminata (Ibo kola nut) should be consumed more than kola vera(Hausa kola nut) and Garcinia kola (bitter kola) because of it high phytochemical and antioxidants content.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Sen S, Chakraborty R, Sridhar C. Free radicals, antioxidant, diseases and

© 2019 Egbujor et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49811