Preliminary Phytochemical Screening and Thin Layer Chromatography Analysis of Stem Bark Extracts of African Mistletoe Parasitic on *Vitellaria paradoxa*, *Piliostigma thonningii* and *Combretum fragrans*

T. Agber Cyprian¹*, Shaakaa Sewuese¹ and Linus U. Akacha¹

¹Department of Chemistry, University of Agriculture, P.M.B. 2373, Makurdi, Benue State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author TAC designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SS and LUA managed the analyses of the study. Author SS managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJACR/2019/v3i230087

Editor(s):

(1) Dr. Gadang Priyotomo, Lecturer, Research Center for Metallurgy and Material, Indonesian Institute of Sciences, Kawasan Puspiptek, Serpong, Tangerang, Indonesia.

Reviewers:

(1) Iwona Rybakowska, Medical University of Gdansk, Poland.
(2) Patcharee Boonsiri, Khon Kaen University, Thailand.
(3) Ronald Bartzatt, University of Nebraska, USA.

Complete Peer review History: http://www.sdiarticle3.com/review-history/49331

Received 07 March 2019
Accepted 21 May 2019
Published 28 May 2019

ABSTRACT

Aim: Mistletoes are highly utilized in traditional medicine to treat different kinds of diseases such as heart diseases, diabetes and malaria, among others. The chemistry of African mistletoe is not sufficiently documented. This paper is therefore, aimed at determining the phytochemicals present in the crude extracts of mistletoe parasitic on plants that are commonly seen as hosts.

Study Design: This study was designed to compare the phytochemical profiles of mistletoe stem barks obtained from different plant hosts.

Place and Duration of Study: Department of Chemistry, University of Agriculture, Makurdi, Benue State Nigeria, between August and September, 2018.

Methodology: Powdered stem bark of mistletoe was extracted successively with hexane, ethyl acetate and methanol. Preliminary phytochemical screening was carried out on the extracts. Thin
layer chromatography (TLC) was carried out on silica gel precoated plates in 9:1 (hexane/ethyl acetate), 1:1 (hexane/ethyl acetate), and 7:3 (ethyl acetate/methanol) mobile phases for hexane, ethyl acetate and methanol extracts respectively.

Results: The study revealed the presence of secondary metabolites such as alkaloids, flavonoids, tannins/phenols, cardiac glycosides, steroids and triterpenoids. It was evident from TLC analysis that mistletoes from various plant hosts contain similar chemical profile.

Conclusion: We therefore debunk the claim by some herbalists that medicinal values of mistletoes vary due to host plant. This is the first time a study of this kind is reported on mistletoe parasitic on Vitellaria paradoxa Pilostigma thonningii, Combretum fragrans.

Keywords: Mistletoe; thin layer chromatography; phytochemicals; silica gel; mobile phase.

1. INTRODUCTION

African mistletoes are hemiparasitic plants that grow on other plants. The fact that they photosynthesize and derive some salts from host plants; they are regarded as hemiparasitic [1]. Mistletoes grow on many plants in Nigeria including Vitellaria paradoxa, Pilostigma thonningii, Combretum fragrans, Parkia biglobosa and many others. They are also rarely seen to grow on mango, guava, cocoa and kola nut trees etc [2]. It is believed that birds excrete the seeds of mistletoe through feces on trees upon which they sit. The sticky feces facilitate the attachment of seeds on tree branches [3]. Almost all trees could have opportunity to host mistletoe but just a few have been seen to do so. In Igboughul District of Bali Local Government Area, Taraba State, almost 9 in 10 Vitellaria paradoxa (shea butter tree) and 8 in 10 Pilostigma thonningii host mistletoe. This could be due to their thick, fresh and easily penetrated stem barks.

Medicinal plants produce various classes of secondary metabolites such as alkaloids, tannins, steroids, phenols, saponins, flavonoids glycosides, terpenoids and others that are responsible for therapeutic and defense properties [4]. Preliminary phytochemical screening is a useful method of detecting these bioactive principles that are present in medicinal plants and may subsequently be used in drug discovery and development processes [5].

Mistletoes are highly utilized in traditional medicine to treat different kinds of diseases such as heart diseases, diabetes, malaria, cancer and diarrhea [6,3] etc. However, some traditional practitioners claim that the use of mistletoe depends on the type of host plant- mistletoes from specific plants are used to treat specific diseases [6]. In Nigeria for example, mistletoes found on bamboo trees and gamba grasses are used to perform rituals especially money making. However, mistletoes on bamboo and gamba grasses are not common.

The chemistry of African mistletoe is not sufficiently documented. However, polysaccharides, lecthin, viscotoxin and peptides, were isolated and identified structurally [1,7] The report published by Ezema et al. [8] revealed the presence of cardiac glycosides, steroids, saponins, carbohydrates, and terpenoids in the leaves of mistletoe parasitic on Parkia biglobosa. The methanolic extract of mistletoe leaves were shown to contain saponins, alkaloids, phenols, flavonoids and tannins [2].

From the survey of literature, little or no information is reported of the phytochemistry of mistletoe parasitic on Vitellaria paradoxa, Pilostigma thonningii and Combretum fragrans. This paper is therefore, aimed at determining the phytochemicals present in the crude extracts of mistletoe parasitic on these plants that are commonly seen as hosts in Igboughul District of Bali L.G.A of Taraba State using preliminary phytochemical screening and thin layer chromatography analyses of crude extracts.

2. MATERIALS AND METHODS

2.1 Sample Collection

Mistletoe stems were harvested from Vitellaria paradoxa, Pilostigma thonningii and Combretum fragrans in Igboughul District of Bali L.G.A, Taraba State in August, 2018. The barks were peeled and allowed to dry under shed. The barks were pulverized using pestle and mortar.

2.2 Extraction

Using cold macerations, a powdered sample (10 g) was extracted with 50 mL of hexane for 48 hour with intermittent shaking. The macerated sample was filtered using Whatman filter paper
No. 5 and the filtrate allowed to evaporate to obtain crude hexane extract. The residue was allowed to dry for further extraction with ethyl acetate followed by methanol [9].

2.3 Preliminary Phytochemical Screening

Preliminary phytochemical screening of the hexane, ethyl acetate and methanol crude extracts each of the three plants were carried out based on routine practices described by Adawia et al. [10]; Sabri et al. [11]; Satheesh et al. [12].

2.3.1 Test for steroids and triterpenoids (Liebermann-Burchard test)

Approximately 3 mg of an extract was mixed with 3 drops of acetic anhydride, boiled and cooled. Concentrated sulphuric acid was then added from the sides of the test tube and observed for the formation of a brown ring at the junction of two layers. Green coloration of the upper layer and the formation of deep red colour in the lower layer would indicate a positive test for steroids and triterpenoids, respectively.

2.3.2 Test for cardiac glycosides (Keller-Killiani Test)

About 3 mg of extract was mixed with 3 drops of conc. glacial acetic acid and diluted ferric chloride solution and mixed. Concentrated sulphuric acid was added, and observed for the formation of two layers. Lower reddish brown layer and upper acetic acid layer which turn bluish green would indicate a positive test for glycosides.

2.3.3 Test for phenolics and tannins (Ferric chloride test)

About 2 mg each of a crude extract was dissolved in 2 mL of solvent of extraction and treated with 4 drops of ferric chloride solution. Formation of bluish black colour would indicate the presence of phenols. Generally, the formation of bluish-black colour would indicate the presence of gallic tannins and bluish-green would indicate the presence of catechic tannins.

2.3.4 Test for flavonoids (alkaline test)

To about 5 mg of an extract was added 5 mL of diluted sodium hydroxide solution. The appearance of yellow colour which would become colourless on addition of few drops of dilute hydrochloric acid would indicate the presence of flavonoids.

2.3.5 Test for saponins

The ability of saponins to produce frothing in aqueous solution and to haemolyse red blood cells was used as screening test for these compounds. Distilled water (5 mL) was added to an extract (5 mg) and strongly shaken in a test tube. Formation of a large amount of froths that would last for about 30 minutes indicated the presence of saponins.

2.3.6 Test for alkaloids

About 3 mL of an extract was mixed with 1 mL of 10% HCl in a test tube and heated (over boiling water) for 20 minutes. This was allowed to cool and filtered; 1 mL of the filtrate was treated with few drops of Mayer’s reagent. Appearance of creamy precipitate would indicate the presence of alkaloids.

2.4 Thin Layer Chromatography

Approximately 2 mg of an extract was reconstituted with solvent of extraction and spotted on silica gel precoated plates. The extracts were drawn with capillary tubes and applied as spots on a stationary phase (silica-gel coated plate) about 1 cm from the base. These plates were developed in suitable solvent system of 9:1 (Hex/E.A), 1:1 (Hex/E.A), and 7:3 (E.A/MeOH) for hexane, ethyl acetate and methanol extracts respectively in a TLC tank. The developed plates were then heated at about 120°C for charring to have a better vision of possible spot [13].

3. RESULTS AND DISCUSSION

We hereby report that “Mistletoe stem were harvested from Vitellaria paradoxa, Pilostigma thonningii and Combretum fragrans. Same solvents were used for extraction of mistletoe obtained from the above named plant hosts. Similarly, same mobile phases and reagents were used to carry out TLC and phytochemical screening, respectively, in order to compare the phytochemical compounds among the specimens.

From the result of TLC (Table 1), it is shown that, samples of V. paradoxa, C. fragrans and P. thonningii contain similar chemical profile. Of all samples, hexane extracts showed about eight spots with Rf that ranged from 0.2 to 0.8. The spots were violet in colour- a characteristic of triterpenoids [14].
Similarly, the ethyl acetate extracts of all samples contain four spots of similar R_f values depicting similar phytochemical profile irrespective of the source of sample. However, no distinctive spot was observed on TLC plate of the methanol extracts as heavy dragging was observed (Fig. 1).

From the TLC analysis, it is indicative that, hexane, ethyl acetate and methanol extracts of mistletoe contain similar phytochemical profile irrespective of plant host. This study thus, disagrees with the claim that mistletoe from particular host plant has unique medicinal values.

The phytochemical screening result (Table 2) showed that only steroids and triterpenoids were present in the hexane extracts of all the samples. It was shown from the result that ethyl acetate extracts contained steroids and triterpenoids, cardiac glycosides, phenols/tannins and flavonoids. In addition to alkaloids, the methanol

<table>
<thead>
<tr>
<th>Extracts</th>
<th>Solvent System</th>
<th>No. of Spots</th>
<th>R_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>9:1 (H/E.A)</td>
<td>8</td>
<td>0.2-0.8</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>5:5 (H/E.A)</td>
<td>4</td>
<td>0.3-0.6</td>
</tr>
<tr>
<td>Methanol</td>
<td>7:3 (E.A/MeOH)</td>
<td>Continuous lines</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: H= Hexane, E.A= Ethyl Acetate, MeOH= Methanol

Table 1. Result of TLC analysis

![TLC plates](image)

*Fig. 1. TLC plates; left=hexane, middle; ethyl acetate, right; methanol extracts
*V= V. paradoxa, C= C. fragrans, N= P. thonningii

<table>
<thead>
<tr>
<th>Class of compounds</th>
<th>Hexane</th>
<th>Ethyl acetate</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids/triterpenoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Phenols/Tannins</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2. Phytochemical screening result of mistletoe samples obtained from different plant host

<table>
<thead>
<tr>
<th>Class of compounds</th>
<th>Hexane</th>
<th>Ethyl acetate</th>
<th>Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids/triterpenoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Phenols/Tannins</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Key: - = Absence, + = presence

V.P= Vitellaria paradoxa, C.F= Combretum fragrans, P.T= Pilostigma thonningii
extracts contained similar classes of compounds to ethyl acetate extracts. Saponins were however, not detected in any of the samples. Petroleum ether (non-polar solvent) extract of leaves of mistletoe were found to contain tannin, saponins, steroids and terpenes; the ethanol (polar solvent) extract contained tannins, alkaloids, glycosides, steroids, saponins and terpenes [15]. This result is comparable to that published using leaves of mistletoe by Tabe et al. [2].

4. CONCLUSION

The stem bark extracts of mistletoe contained alkaloids, flavonoids, steroids, triterpenoids, cardiac glycosides and tannins. Based on similar phytochemical profile possessed by mistletoes obtained from different plants, it can be concluded that the plant may have similar medicinal or biological effects irrespective of their hosts. Furthermore it can be inferred from this research that, mistletoe do not obtain their phytochemicals from host plants but rather produce by them since they undergo photosynthesis on their own. Thus, the claim by some herbalists that medicinal values of mistletoes vary due to host plant is debunked. This is the first time a study of this kind is published using leaves of mistletoe by Tabe et al. [2].

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

© 2019 Cyprian et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/49331